| 我们修复我们的图像尺寸、批量大小,和纪元,并编码我们的分类的类标签。TensorFlow 2.0 于 2019 年三月发布,这个练习是尝试它的完美理由。 import tensorflow as tf # Load the TensorBoard notebook extension (optional)%load_ext tensorboard.notebook tf.random.set_seed(42)tf.__version__ # Output'2.0.0-alpha0'
 深度学习训练在模型训练阶段,我们将构建三个深度训练模型,使用我们的训练集训练,使用验证数据比较它们的性能。然后,我们保存这些模型并在之后的模型评估阶段使用它们。 模型 1:从头开始的 CNN我们的第一个疟疾检测模型将从头开始构建和训练一个基础的 CNN。首先,让我们定义我们的模型架构, inp = tf.keras.layers.Input(shape=INPUT_SHAPE) conv1 = tf.keras.layers.Conv2D(32, kernel_size=(3, 3),                                activation='relu', padding='same')(inp)pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1)conv2 = tf.keras.layers.Conv2D(64, kernel_size=(3, 3),                                activation='relu', padding='same')(pool1)pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)conv3 = tf.keras.layers.Conv2D(128, kernel_size=(3, 3),                                activation='relu', padding='same')(pool2)pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv3) flat = tf.keras.layers.Flatten()(pool3) hidden1 = tf.keras.layers.Dense(512, activation='relu')(flat)drop1 = tf.keras.layers.Dropout(rate=0.3)(hidden1)hidden2 = tf.keras.layers.Dense(512, activation='relu')(drop1)drop2 = tf.keras.layers.Dropout(rate=0.3)(hidden2) out = tf.keras.layers.Dense(1, activation='sigmoid')(drop2) model = tf.keras.Model(inputs=inp, outputs=out)model.compile(optimizer='adam',                loss='binary_crossentropy',                metrics=['accuracy'])model.summary()  # OutputModel: "model"_________________________________________________________________Layer (type)                 Output Shape              Param #   =================================================================input_1 (InputLayer)         [(None, 125, 125, 3)]     0         _________________________________________________________________conv2d (Conv2D)              (None, 125, 125, 32)      896       _________________________________________________________________max_pooling2d (MaxPooling2D) (None, 62, 62, 32)        0         _________________________________________________________________conv2d_1 (Conv2D)            (None, 62, 62, 64)        18496     _________________________________________________________________......_________________________________________________________________dense_1 (Dense)              (None, 512)               262656    _________________________________________________________________dropout_1 (Dropout)          (None, 512)               0         _________________________________________________________________dense_2 (Dense)              (None, 1)                 513       =================================================================Total params: 15,102,529Trainable params: 15,102,529Non-trainable params: 0_________________________________________________________________
 (编辑:南平站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |